大家好,今天小编关注到一个比较有意思的话题,就是关于足球即时比分api的问题,于是小编就整理了4个相关介绍足球即时比分api的解答,让我们一起看看吧。
正巧最近在开发微信公众平台,就说说微信公众平台可以实现哪些功能(除基本回复外):
1.常见API调用:查询天气,周边检索,测距,地图导航人工智能搞笑回复,翻译,查询快递,每日笑话,实时新闻,足球比分等。
2基于代码实现:可以搞秒杀活动,刮刮乐,视频播放,会员绑定等。当然另我震惊的是可以在微信公众平台开发游戏,这个游戏目前还在开发中。
不错
苹果手机升级到iOS16,值得升级。
iOS16是苹果公司推出的最新系统版本,其提供了极佳的用户体验和多项升级功能。其中,最受人喜爱的应该是全新的灵动岛功能,它可以让用户更加高效地完成各种任务。相比之前的版本,iOS16在流畅度、信号和续航方面也有了不少的提升,让用户使用起来更加愉快。刚刚推出的时候,iOS16也出现了一些bug。例如,粘贴需要确认,某些应用不能匹配灵动岛功能,微信更新后不能打开等问题,但是这些都已经被苹果官方及时修复。目前,大部分用户都能够愉快地使用iOS16了。如果你是一位开发者,那么iOS16就更值得升级了。iOS16提供了更多的API,让开发者更容易地创建复杂的应用程序。此外,iOS16还支持全新的由下至上的通知显示方式,以及实时活动功能,用户可以直接从锁屏界面上获取当前的音乐播放、比赛比分、锻炼进展等数据。iOS16的专注模式也更加符合操作直觉,用户现在可以在锁定屏幕之间滑动以启用不同的设置。在发送消息方面,用户可以在发送消息后15分钟内编辑或撤回,或恢复30天内删除的信息,将对话标记为未读。苹果手机升级到iOS16是非常值得的。它不仅提供了更好的用户体验和更多的升级功能,而且还能够让开发者更容易地创建复杂的应用程序。
AI人工智能越来越先进,不说别的行业,用到游戏中,以后的 Boss 越来越难打了,游戏的智能化也会越来越逼真了,游戏可玩性肯定会逐渐提高!
我经常用人族、神族 1 VS 7 个电脑,按这个趋势,以后恐怕 7 VS 1 个电脑都有很大难度!
围棋和星际不同的地方在于一个是已知博弈一个是未知博弈。
首先来看一下ai下围棋,围棋用19*19格子,落子点总共有361个,围棋是一个计算量相当庞大的策略游戏,在这一点上星际争霸无法匹及。
ai在一开始学习星际争霸的时候,会进步十分缓慢,因为对ai来说,点在不同的像素上,都是不同的一个决策,通过学习ai会明白,点这一片区域都是一样的。围棋是一个可以长时间决策的游戏,星际是一个需要瞬间决策的游戏,后面再来分析这两种情况。
再说已知和未知,围棋所有棋子可见,ai可以根据当前情况做出最正确的判断。星际存在战争迷雾,(rts跟moba不同,moba的战争迷雾影响人物位置和一些野怪刷新,rts战争迷雾则影响更大,假设(ai)pvt(人类),ai没探路,默认开矿,人族开车拖农民一波,ai稳输,不可能赢。再比如ai探路看到二矿的情况下,是否会进行二次探路,人类有可能退二矿封侦查补兵营打一波,也有可能外面野vs开飞机)
最后说一下昨天的几场比赛,前十场是之前打的录像。在这十场中ai可以操控所有的已知视野,ai 10:0击败了the little one和mana。我说实话,tlo和mana算不上顶点选手,可以算一线选手。其中有两三场操作完爆。最后一场是现场打的,ai也限制了视野,只能操控屏幕内的单位,在mana进行双线之后,ai的决策树出现了明显的问题,不会分兵,被mana一直牵在家里无法出门,这也导致了后面的落败。
纵观几场比赛,都是在汇龙岛上的pvp,ai战术以爆追裂为主,当然也有先知换农民这种操作,爆自爆球。ai的运营也是先满采主矿,在开二矿,在最后一把mana也采用了这种运营方式,ai也有一个水晶卡气矿的操作,暂时不知道为什么要这样做,运营方式也有待商议,我明天要测试一下才能有结果。
不管怎么说,和围棋一样,ai打开新世界的大门
AIAlphaStar在录像里面复盘可以看出来,瞬间EPM已经达到1200+,而人类极限是180,工程师此前表示会把AIAIphaStar的操作能力限制在人类能力范围内,目前看下来还是有很多次依靠超乎常人的操作能力翻盘,尤其是对阵MANA的那盘。
所以我个人的观点是还需要对人工智能的操作能力进行严格限制,之后的对局才更加有参考价值。
不过还有一点细思极恐的,如果是AI自主突破“主人”的限制自主学习的作弊呢?
如果真能做到限制api和扫描小地图次数时打赢maru或serral之类的顶级选手,那说明ai在实用性上又进了一步。虽然是10比1,但那个1是现原形的。。。
其实人工智能不用超过人类,能取代绝大多数人的工作就行。未来绝大多数人的工作也许只是为了生活不那么无聊,离北京折叠这部小说中说的情况就更近了。。。。
Ai在游戏上的胜利意味着 ai的多因素复合运算能力超越人类 这种进步很大的拉近了机器的复杂逻辑能力与人类的逻辑能力之间的距离。同时也意味着机器进一步取代人类的能力,大胆预测,不远的将来中人类将全面机械化。
本文通过一种简单的 Catch 游戏介绍了深度强化学习的基本原理,并给出了完整的以 Keras 为前端的 TensorFlow 代码实现,是入门深度强化学习的很不错的选择。
GitHub 链接:
去年,DeepMind 的 AlphaGo 以 4-1 的比分打败了世界围棋冠军李世石。超过 2 亿的观众就这样看着强化学习(reinforce learning)走上了世界舞台。几年前,DeepMind 制作了一个可以玩 Atari 游戏的机器人,引发轩然大波。此后这个公司很快被谷歌收购。
很多研究者相信,强化学习是我们创造通用人工智能(Artificial General Intelligence)的最佳手段。这是一个令人兴奋的领域,有着许多未解决的挑战和巨大的潜能。
强化学习起初看似非常有挑战性,但其实要入门并不困难。在这篇文章中,我们将创造一个基于 Keras 的简单机器人,使它能玩 Catch 游戏。
Catch 游戏
原始的 Catch 游戏界面
Catch 是一个非常简单的街机游戏,你可能在孩提时代玩过它。游戏规则如下:水果从屏幕的顶部落下,玩家必须用一个篮子抓住它们;每抓住一个水果,玩家得一分;每漏掉一个水果,玩家会被扣除一分。
这里的目标是让电脑自己玩 Catch 游戏。不过,我们不会使用这么漂亮的游戏界面。相反,我们会使用一个简单的游戏版本来简化任务:
简化的 Catch 游戏界面
玩 Catch 游戏时,玩家要决定三种可能的行为。玩家可以将篮子左移、右移、或保持不动。
这个决定取决于游戏的当前状态。也就是说,取决于果子掉落的位置和篮子的位置。
我们的目标是创造这样一个模型:它能在给定游戏屏幕内容的情况下,选择导致得分最高的动作。
这个任务可以被看做一个简单的分类问题。我们可以让游戏专家多次玩这个游戏,并记录他们的行为。然后,可以通过选择类似于游戏专家的「正确」动作来训练模型。
但这实际上并不是人类学习的方式。人类可以在无指导的情况下,自学像 Catch 这样的游戏。这非常有用。想象一下,你如果每次想学习像 Catch 一样简单的东西,就必须雇佣一批专家玩这个游戏上千次!这必然非常昂贵而缓慢。
而在强化学习中,模型不会根据标记的数据训练,而是通过以往的经历。
深度强化学习
强化学习受行为心理学启发。
我们并不为模型提供「正确的」行为,而是给予奖励和惩罚。该模型接受关于当前环境状态的信息(例如计算机游戏屏幕)。然后,它将输出一个动作,就像游戏手柄一样。环境将对这个动作做出回应,并提供下一个状态和奖惩行为。
据此,模型学习并寻找最大化奖励的行为。
实际上,有很多方式能够做到这一点。下面,让我们了解一下 Q-Learning。利用 Q-Learning 训练计算机玩 Atari 游戏的时候,Q-Learning 曾引起了轰动。现在,Q-Learning 依然是一个有重大意义的概念。大多数现代的强化学习算法,都是 Q-Learning 的一些改进。
理解 Q-Learning
了解 Q-Learning 的一个好方法,就是将 Catch 游戏和下象棋进行比较。
在这两种游戏中,你都会得到一个状态 S。在象棋中,这代表棋盘上棋子的位置。在 Catch 游戏中,这代表水果和篮子的位置。
然后,玩家要采取一个动作,称作 A。在象棋中,玩家要移动一个棋子。而在 Catch 游戏中,这代表着将篮子向左、向右移动,或是保持在当前位置。
据此,会得到一些奖励 R 和一个新状态 S'。
Catch 游戏和象棋的一个共同点在于,奖励并不会立即出现在动作之后。
在 Catch 游戏中,只有在水果掉到篮子里或是撞到地板上时你才会获得奖励。而在象棋中,只有在整盘棋赢了或输了之后,才会获得奖励。这也就是说,奖励是稀疏分布的(sparsely distributed)。大多数时候,R 保持为零。
产生的奖励并不总是前一个动作的结果。也许,很早之前采取的某些动作才是获胜的关键。要弄清楚哪个动作对最终的奖励负责,这通常被称为信度分配问题(credit assignment problem)。
由于奖励的延迟性,优秀的象棋选手并不会仅通过最直接可见的奖励来选择他们的落子方式。相反,他们会考虑预期未来奖励(expected future reward),并据此进行选择。
例如,他们不仅要考虑下一步是否能够消灭对手的一个棋子。他们也会考虑那些从长远的角度有益的行为。
在 Q-Learning 中,我们根据最高的预期未来奖励选行动。我们使用 Q 函数进行计算。这个数学函数有两个变量:游戏的当前状态和给定的动作。
因此,我们可以将其记为 Q(state,action)。
在 S 状态下,我们将估计每个可能的动作 A 所带来的的回报。我们假定在采取行动 A 且进入下一个状态 S' 以后,一切都很完美。
对于给定状态 S 和动作 A,预期未来奖励 Q(S,A)被计算为即时奖励 R 加上其后的预期未来奖励 Q(S',A')。我们假设下一个动作 A' 是最优的。
Because there is uncertainty about the future, we discount Q(S',A') by the factor gamma γ.
由于未来的不确定性,我们用 γ 因子乘以 Q(S',A')表示折扣:
Q(S,A) = R + γ * max Q(S',A')
象棋高手擅长在心里估算未来回报。换句话说,他们的 Q 函数 Q(S,A)非常精确。
大多数象棋训练都是围绕着发展更好的 Q 函数进行的。玩家使用棋谱学习,从而了解特定动作如何发生,以及给定的动作有多大可能会导致胜利。
但是,机器如何评估一个 Q 函数的好坏呢?这就是神经网络大展身手的地方了。
最终回归
玩游戏的时候,我们会产生很多「经历」,包括以下几个部分:
初始状态,S
采取的动作,A
获得的奖励,R
下一状态,S'
这些经历就是我们的训练数据。我们可以将估算 Q(S,A)的问题定义为回归问题。为了解决这个问题,我们可以使用神经网络。
给定一个由 S 和 A 组成的输入向量,神经网络需要能预测 Q(S,A)的值等于目标:R + γ * max Q(S',A')。
如果我们能很好地预测不同状态 S 和不同行为 A 的 Q(S,A),我们就能很好地逼近 Q 函数。请注意,我们通过与 Q(S,A)相同的神经网络估算 Q(S',A')。
训练过程
给定一批经历 <S,A,R,S'>,其训练过程如下:
1、对于每个可能的动作 A'(向左、向右、不动),使用神经网络预测预期未来奖励 Q(S',A');
2、选择 3 个预期未来奖励中的最大值,作为 max Q(S',A');
3、计算 r + γ * max Q(S',A'),这就是神经网络的目标值;
4、使用损失函数(loss function)训练神经网络。损失函数可以计算预测值离目标值的距离。此处,我们使用 0.5 * (predicted_Q(S,A)—target)² 作为损失函数。
在游戏过程中,所有的经历都会被存储在回放存储器(replay memory)中。这就像一个存储 <S,A,R,S'> 对的简单缓存。这些经历回放类同样能用于准备训练数据。让我们看看下面的代码:
class ExperienceReplay(object):
"""
During gameplay all the experiences < s, a, r, s』 > are stored in a replay memory.
In training, batches of randomly drawn experiences are used to generate the input and target for training.
"""
def __init__(self, max_memory=100, discount=.9):
"""
Setup
max_memory: the maximum number of experiences we want to store
memory: a list of experiences
discount: the discount factor for future experience
In the memory the information whether the game ended at the state is stored seperately in a nested array
[...
[experience, game_over]
[experience, game_over]
...]
"""
self.max_memory = max_memory
self.memory = list()
self.discount = discount
def remember(self, states, game_over):
#Save a state to memory
self.memory.append([states, game_over])
#We don't want to store infinite memories, so if we have too many, we just delete the oldest one
if len(self.memory) > self.max_memory:
del self.memory[0]
def get_batch(self, model, batch_size=10):
#How many experiences do we have?
len_memory = len(self.memory)
#Calculate the number of actions that can possibly be taken in the game
num_actions = model.output_shape[-1]
#Dimensions of the game field
env_dim = self.memory[0][0][0].shape[1]
#We want to return an input and target vector with inputs from an observed state...
inputs = np.zeros((min(len_memory, batch_size), env_dim))
#...and the target r + gamma * max Q(s』,a』)
#Note that our target is a matrix, with possible fields not only for the action taken but also
#for the other possible actions. The actions not take the same value as the prediction to not affect them
targets = np.zeros((inputs.shape[0], num_actions)
#We draw states to learn from randomly
for i, idx in enumerate(np.random.randint(0, len_memory,
size=inputs.shape[0])):
"""
Here we load one transition <s, a, r, s』> from memory
state_t: initial state s
action_t: action taken a
reward_t: reward earned r
state_tp1: the state that followed s』
"""
state_t, action_t, reward_t, state_tp1 = self.memory[idx][0]
#We also need to know whether the game ended at this state
game_over = self.memory[idx][1]
#add the state s to the input
inputs[i:i+1] = state_t
# First we fill the target values with the predictions of the model.
# They will not be affected by training (since the training loss for them is 0)
targets[i] = model.predict(state_t)[0]
"""
If the game ended, the expected reward Q(s,a) should be the final reward r.
Otherwise the target value is r + gamma * max Q(s』,a』)
"""
# Here Q_sa is max_a'Q(s', a')
Q_sa = np.max(model.predict(state_tp1)[0])
#if the game ended, the reward is the final reward
if game_over: # if game_over is True
targets[i, action_t] = reward_t
else:
# r + gamma * max Q(s』,a』)
targets[i, action_t] = reward_t + self.discount * Q_sa
return inputs, targets
定义模型
现在让我们定义这个利用 Q-Learning 学习 Catch 游戏的模型。
我们使用 Keras 作为 Tensorflow 的前端。我们的基准模型是一个简单的三层密集网络。
这个模型在简单版的 Catch 游戏当中表现很好。你可以在 GitHub 中找到它的完整实现过程。
你也可以尝试更加复杂的模型,测试其能否获得更好的性能。
num_actions = 3 # [move_left, stay, move_right]
hidden_size = 100 # Size of the hidden layers
grid_size = 10 # Size of the playing field
def baseline_model(grid_size,num_actions,hidden_size):
#seting up the model with keras
model = Sequential()
model.add(Dense(hidden_size, input_shape=(grid_size**2,), activation='relu'))
model.add(Dense(hidden_size, activation='relu'))
model.add(Dense(num_actions))
model.compile(sgd(lr=.1), "mse")
return model
探索
Q-Learning 的最后一种成分是探索。
日常生活的经验告诉我们,有时候你得做点奇怪的事情或是随机的手段,才能发现是否有比日常动作更好的东西。
Q-Learning 也是如此。总是做最好的选择,意味着你可能会错过一些从未探索的道路。为了避免这种情况,学习者有时会添加一个随机项,而未必总是用最好的。
我们可以将定义训练方法如下:
def train(model,epochs):
# Train
#Reseting the win counter
win_cnt = 0
# We want to keep track of the progress of the AI over time, so we save its win count history
win_hist = []
#Epochs is the number of games we play
for e in range(epochs):
loss = 0.
#Resetting the game
env.reset()
game_over = False
# get initial input
input_t = env.observe()
while not game_over:
#The learner is acting on the last observed game screen
#input_t is a vector containing representing the game screen
input_tm1 = input_t
#Take a random action with probability epsilon
if np.random.rand() <= epsilon:
#Eat something random from the menu
action = np.random.randint(0, num_actions, size=1)
else:
#Choose yourself
#q contains the expected rewards for the actions
q = model.predict(input_tm1)
#We pick the action with the highest expected reward
action = np.argmax(q[0])
# apply action, get rewards and new state
input_t, reward, game_over = env.act(action)
#If we managed to catch the fruit we add 1 to our win counter
if reward == 1:
win_cnt += 1
#Uncomment this to render the game here
#display_screen(action,3000,inputs[0])
"""
The experiences < s, a, r, s』 > we make during gameplay are our training data.
Here we first save the last experience, and then load a batch of experiences to train our model
"""
# store experience
exp_replay.remember([input_tm1, action, reward, input_t], game_over)
# Load batch of experiences
inputs, targets = exp_replay.get_batch(model, batch_size=batch_size)
# train model on experiences
batch_loss = model.train_on_batch(inputs, targets)
#sum up loss over all batches in an epoch
loss += batch_loss
win_hist.append(win_cnt)
return win_hist
我将这个游戏机器人训练了 5000 个 epoch,结果表现得很不错!
Catch 机器人的动作
正如你在上述动图中看到的那样,机器人可以抓住从天空中掉落的苹果。
为了将这个模型学习的过程可视化,我绘制了每一个 epoch 的胜利移动平均线,结果如下:
接下来做什么?
现在,你已经对强化学习有了初步的直觉了解。我建议仔细阅读该教程的完整代码。你也可以试验看看。
你可能还想看看 Arthur Juliani 的系列介绍()。如果你需要一个更加正式的入门课,可以看看
Stanford's CS 234:
Berkeley's CS 294:
或是 David Silver's lectures from UCL:
训练你的强化学习技能最好是通过 OpenAI's Gym(),它使用标准化的应用程序界面(API)提供了一系列训练环境。
到此,以上就是小编对于足球即时比分api的问题就介绍到这了,希望介绍关于足球即时比分api的4点解答对大家有用。
大家好,今天小编关注到一个比较有意思的话题,就是关于10u巴萨的问...
大家好,今天小编关注到一个比较有意思的话题,就是关于足协杯2017在...
大家好,今天小编关注到一个比较有意思的话题,就是关于足协杯2021百...
大家好,今天小编关注到一个比较有意思的话题,就是关于玻利维亚甲组足球...
大家好,今天小编关注到一个比较有意思的话题,就是关于中国vs俄罗斯的...